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An Architecture for TSI-Free Nonblocking
Optical TDM Switches
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Abstract—One of the key elements in building a time-division-
multiplexed (TDM) switch is the time slot interchange (TSI). Given
the current optical switching and buffer technologies, TSI-based
TDM architectures have many implementation drawbacks, in-
cluding severe signal attenuation. Some studies showed that some
space-time equivalence diagrams can be converted into a delay-
unit-based (TSI-free) TDM. This type of architecture is attractive
for optical TDM switches, but the techniques discussed in those
studies are for rearrangeable switches. Many applications require
nonblocking switches where adding a new connection (or a flow)
will not cause rearrangement of existing connections. In this paper,
we present the design principle for building strictly nonblocking
delay-unit-based (TSI-free) optical TDM switches.

Index Terms—Photonic switching system, space/time diagrams,
strictly nonblocking (SNB) switches, time slot interchange (TSI).

I. INTRODUCTION

PHOTONIC switching is a relatively new field compared
with electronic switching [1]. Photonic switching devices

usually exhibit different characteristics than their electronic
counterparts. New photonic switching architectures are needed
to exploit these differences. For example, some photonic
switching devices, such as a directional coupler or a micro-
electromechanical systems (MEMS) device, allow two travers-
ing signals, but an electronic switching device only allows
one. This characteristic was exploited in [2] to build a more
cross-point efficient switch. Another example is a crosstalk
reduction, which is a critical issue in an all-optical network,
as optical amplifiers are mostly linear amplifiers and cannot
remove crosstalk from the system. Although a crosstalk is a
device-level problem, it can be solved at the system level with
a right switching architecture [3], [4].

This paper deals with another characteristic of photonic
switching technologies: the lack of versatile optical buffers. In a
conventional time-division-multiplexed (TDM) switch, the time
slot interchange (TSI) is a key component that performs time-
domain switching. A TSI can be easily implemented with the
random access memory. But, its implementation in the optical
domain is complicated. One way to build an optical TSI is
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Fig. 1. (a) TSI-based TDM switch. (b) One implementation of an optical TSI.

shown in Fig. 1, and it combines optical space switch and fiber
delay lines. A data block will be circulated back into the switch
fabric many times before it is sent out [13], [14]. As pointed
in [6], signal attenuation can become a severe problem in such
a system. The feedback nature also makes synchronization a
complicated issue to deal with.

A TDM switch combines both time and space switching. The
design is based on the space/time equivalence principle which
has well been discussed. Different space-time equivalence dia-
grams lead to different types of implementations. One type of
diagrams [5], [6] can lead to a TDM switch without using TSIs
(see Fig. 2). This TSI-free TDM architecture is very attractive
for the reason mentioned above. The techniques discussed
in [5] and [6] are for rearrangeable networks where adding
a connection (or a flow) may require the rearrangement of
existing connections (or flows), but many applications require
nonblocking networks [9], [10], in which adding a connection
does not affect the existing connections. Nonblocking switches
will be the focus of this paper. Hunter and Smith [16] show a
delay-unit-based TSI-free strictly nonblocking (SNB) network.
It is based on the Cantor network that uses multiple copies
of the Benes-like topology discussed in [6]. The TSI-free
SNB network design principle discussed in this paper will be
more general and more crosspoint efficient than those based on
the Cantor network.

There are two types of nonblocking switches: wide-sense
nonblocking and SNB. The connection setup in a wide-sense
nonblocking network needs to follow a specific algorithm.
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Fig. 2. (a) TDM switch can be implemented with delay units only and does
not contain any TSIs. The frame size is four in this example. (b) Time-dilated
topology of the TDM switch of (a). We find that once the first n connections
are determined, the entire topology is determined. (c) This topology cannot be
time compressed into a TDM switch.

But in a SNB network, whenever a path is found, it can be
used and no setup algorithms are needed. Generally, wide-
sense nonblocking switches require less hardware, but an ef-
ficient setup algorithm is also difficult to find. The studies in
[11] and [15] showed that for the type of switches discussed in
this paper [called Logd(N, k, c) networks, see Section II], the
two have the same complexity. Thus, we focus on SNB switches
in this paper.

A TDM switch is said to maintain frame integrity if data
blocks entering one frame will leave the switch in the same
frame. Hunter and Smith [6] showed two designs in which
one can maintain frame integrity and the other does not. In
this paper, we focus on the switches without frame integrity
because it is easier to explain our design techniques. Also, the
space/time principle can be converted into space/wavelength
switching [7], [8], and the frame integrity has no equivalence
in the space/wavelength switching. Like the studies in [6]
and [8], we also use 2 × 2 directional couplers to illustrate
the design principle. The techniques discussed in this paper
can certainly be used for other photonic switching devices of
different sizes.

II. CHARACTERISTICS OF A TDTS TOPOLOGY

A TDM switch involves switching in both the time and
space domains. To analyze the switching capability, we usually
expand its topology in the time domain so that the entire
switching capability can be analyzed in the expanded topology
[5], [6]. In a delay-unit-based (TSI-free) time-dilated TDM
switch (TDTS) topology, also called a space-time diagram
in [6], each link is shifted in time by the number of delay units
of the link. An example is given in Fig. 2. The TDTS topology
contains the entire switching function in both the time and space
domains.

A TDTS topology has some important properties that lay the
foundation of our design. In the TDTS topology of an n× n
TDM switch with the frame size = d, an input can be labeled
as (t, s), 0 ≤ t ≤ (d− 1) and 0 ≤ s ≤ (n− 1), where t and s

correspond to the time and space dimensions [Fig. 2(b)]. The
connection pattern of stage i can be represented as a mapping
from the output links of the node stage i to the input links
of the node stage (i + 1) (Fig. 3). We use (t, s)l �→ (u, ν)r to
denote the mapping for any stage, where the subscript l and
r represent the link positions on the left and right. Because
a TDTS topology is a repetition of the connection pattern of
the first slot, once the mapping for the first n links (0, j)l, 0 ≤
j ≤ (n− 1) is determined [the heavy lines in Fig. 2(b)], the
mapping for the remaining links in that stage is also determined.
Fig. 2(b) shows one example where the heavy lines determine
the entire TDTS topology of the network.
Property 1: A network topology with size (nd× nd) is a

TDTS topology with input = n, frame size = d if and only if

(i, j)l �→ (u, ν)r

then ((i + e)mod d, j)l �→ ((u + e)mod d, ν)r . (1)

This holds for every stage.
Proof: Property 1 is a direct result of a TDTS topology.

It is therefore a necessary condition. Conversely, if a network
topology satisfies (1), then given the mapping for the first n
connections (0, j)l, 0 ≤ j ≤ (n− 1), we can use (1) to gen-
erate the mapping for the remaining connections (r, j)l, 1 ≤
r ≤ (d− 1), 0 ≤ j ≤ (n− 1), and they are just a repetition
in time of the first n connections. It can be time compressed
into a delay-unit-based TDM switch. Thus, Property 1 is also a
sufficient condition. �

In our discussion below, a topology that satisfies (1) is called
a legal TDTS topology. Property 1 indicates that the degree
of freedom in selecting the interconnection patterns for TDTS
topologies is much lower than for a general (nd× nd) switch.
Property 2: Suppose we change the mapping of a given stage

of a legal TDTS topology to its inverse mapping, the resulting
topology is still a legal TDTS topology.

Proof: Suppose that the given legal TDTS topology has
the number of inputs = n and frame size = d, and the mapping
of the given stage is (i, j)l �→ (u, ν)r. Its inverse mapping
can be written as (u, ν)l �→ (i, j)r. By Property 1, we have
((i + e)mod d, j)l �→ ((u + e)mod d, ν)r. This means that
((u + e)mod d, ν)l �→ ((i + e)mod d, j)r is true in the inverse
mapping. Thus, the inverse mapping also satisfies Property 1
and the topology of the inverse mapping of a legal TDTS
topology is also a legal TDTS topology. �

Any legal TDTS topology can be time compressed into a
delay-unit-based TDM switch. For example, the topology in
Fig. 2(b) is a legal space-time diagram, but the topology in
Fig. 2(c) is not. Identifying an interconnection topology that
satisfies Property 1 is a key step in our design.

III. SNB TSI-FREE TDM SWITCH

A. Design Principle Overview

Shyy and Lea [12] showed a class of nonblocking switches,
called Log2(N, k, c) networks, created by vertically stacking c
copies of an N ×N space switch. The N ×N space switch has
a regular structure and log2 N + k stages. The extra k stages
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Fig. 3. (a) Banyan networks, BY (4, 0). (b) Banyan with extra stages, BY (4, 2). Note the definition of link stage and node stage in the topology.

Fig. 4. To construct a TSI-free TDM switch with four inputs and four slots
(frame size), the first step is to find a Log2(16, 1, 4) network.

are the mirror image of the first k stages in the original log2 N
stages. There are many types of networks that can be used in
the construction of the Log2(N, k, c) network. We choose the
type given in Fig. 3. The connection pattern is slightly changed
from a banyan network (BY) used in [12] (output lines 0 and
1 are swapped). We use BY(w, 0) to represent a w-stage BY
network, and BY(w, k) to represent a w-stage BY network with
k extra stages added. The extra k stages are the mirror image of
the first k stages in the BY network. The optimal values of c
and k are given in [12]. Fig. 4 shows an example of four copies
of BY networks vertically stacked.

The Log2(N, k, c) network cannot be directly used to build a
TSI-free TDM switch because each copy does not have a legal
TDTS topology. But, we can change the topology to one that is
a legal TDTS topology with the same switching capability. Let
n be the number of input and output TDM switch links and d be
the number of timeslots per frame. Assume n = 2p and d = 2q

(i.e., both are a power of 2). The time-dilated topology of this
network will have the size (nd× nd). The proposed method of
constructing a TSI-free TDM switch consists of three steps.

1) Select N = nd. Construct the topology of a
Log2(N, k, c) SNB network which contains c copies of
the BY(p + q, k) network.

2) Replace each BY(p + q, k) network with a legal TDTS
topology that has the same switching capability. As a
result, the overall topology of the Log2(N, k, c) is also
a legal TDTS topology.

3) Time compress the overall topology into a TDM switch.

There are many TDTS topologies that can be used in Step 2).
We present several of them in this paper and show that they lead
to different maximum delays in the network.

B. Topology Transformation

Channel Graphs: The channel graph between an input x and
an output y is the union of all paths connecting x and y. In
a channel graph [Fig. 6(b)], the vertices represent the links
in the original topology [4] and edges represent the internal
paths through a switch node for their vertices [Fig. 5(b)]. The
channel graphs in our discussion are simple graphs, meaning no
multiple edges exist between two vertices. Two channel graphs
X and Y are called isomorphic if there is a bijection between
vertices of X and Y

t : V (X) → V (Y )

such that if and only if any two vertices u and ν from X are
adjacent, then t(u) and t(ν) are adjacent in Y . Simply put, two
isomorphic graphs have identical properties.
New Topology: We now describe the key step in the pro-

posed method. Since in each copy the extra k stages are
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Fig. 5. (a) Original switch topology. (b) Channel graph model where a vertex
represents an input and an output link in the original topology, and an edge
represents an internal path through a node.

Fig. 6. (a) Paths between input (0000) and output (0000) in two different
networks. (b) Channel graph.

always the mirror image of the first k stages, our discussion
on topology transformation will focus on the networks without
extra stages. The BY(p + q, k) network has (p + q + k − 1)
link stages, and they are numbered from 0 to (p + q + k − 2)
(Fig. 3). Besides the two-tuple (t, s) notation used in
Property 1, we also use a binary number (xp+q−1, . . . , x1x0)l

to represent a link position on the left and (xp+q−1, . . . , x1x0)r

on the right, where x0 is the least significant bit. Let Xp+q =
(xp+q−1xp+q−2, . . . , x1x0). The original connection pattern in
the ith link stage of the BY network can be described as

(Xp+q)l �→ (Fi(Xp+q))r , 0 ≤ i ≤ p + q − 2 (2)

where Fi is

Fi(Xp+q) =
{ (xp+q−1, . . . , xp+q−1−i, . . . , x0), if x0 = 0

(xp+q−1, . . . , xp+q−1−i, . . . , x0), if x0 = 1.
(3)

We now replace BY(p + q, k) with a legal TDTS topology
that has an isomorphic channel graph. The replacement network

Fig. 7. TC1 (4, 0) with each switch labeled.

has the same number of stages. The topology of the replacement
network is given in the following formula:

(Xp+q)l �→ (Gi(Xp+q))r , 0 ≤ i ≤ p + q − 2 (4)

where Gi(Xp+q) is

Gi(Xp+q)

=
{ (

(xp+q−1,. . . ,x0)+2p+q−1−i
)
mod nd, if x0 = 0

(xp+q−1,. . . ,x0), if x0 = 1
. (5)

In the new topology, we can see that the first output link of each
node in stage i, 0 ≤ i ≤ p + q − 2, is shifted downward (in a
modular sense) by 2p+q−i−1. We are going to show that the
topology defined by (4) is a legal TDTS topology. We use TC1

(time compressible, type 1) to name the new network defined
by (4). TC1(p + q, 0) represents a (p + q)-stage TC1 network
without extra stages, and TC1(p + q, k) is a network created by
adding k stages (which are mirror image of the first k stages) to
the TC1(p + q, 0) network.
Property 3: There is a unique path from an input to an output

in a TC1(p + q, 0) network.
Proof: Given an input u = (up+q−1, . . . , u1, u0) and an

output ν = (νp+q−1, . . . , ν1, ν0), the node numbers on which
the two are located are (up+q−1, . . . , u1) and (νp+q−1, . . . , ν1),
respectively. Let (kp+q−1, . . . , k1) = ((νp+q−1, . . . , ν1) −
(up+q−1, . . . , u1))mod (nd/2). Then, the path from u to ν is
determined by the path vector (kp+q−1, . . . , k1, ν0), where ν0 is
the last bit of ν. We trace the route starting from the node where
u is located (node stage 0). The node has two output links. If
kp+q−1 is 0, use the lower link; 1, upper link. In general, a
node in stage i will use bit kp+q−i to determine which of the
two output links for the path in a similar way. The last bit ν0

of the path vector will determine the output link of the node
in the last stage. Since different ν and u will lead to different
path vector (kp+q−1, . . . , k1, ν0), the path is unique for any
input/output pair. �

Fig. 7 shows the path from input 1100 to output 0110. The
path vector is (k3, k2, k1, ν0) = (1010), and its path is indicated
by the heavy lines.
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Fig. 8. (a) Paths from one input to all outputs form a full binary tree. (b) Paths from all inputs to one output also form a full binary tree.

Fig. 9. (a) Channel graph from an input to an output. (b) Number of intersecting paths at each vertex in the channel graph between input 0000 and output 0000.

Property 4: In the TC1(p + q, 0) network, the channel graph
from an input to all outputs forms a full binary tree (no leaf
missing). The channel graph from all inputs to one output also
forms a full binary tree.

Proof: An input can reach all outputs because there is a
unique path from an input to an output (Property 3). Consider
the channel graph from one input to all outputs. Since the
number of vertices reachable from an inlet vertex only increases
by a factor of 2, unless the channel graph is a full tree, an input
cannot reach all outputs. Similarly, we can conclude that the
channel graph form all inputs to one output is also a full binary
tree [in the reverse direction, see Fig. 8(b)]. �

One result derived from Property 4 is that the number of
intersection paths at a vertex of stage i will be min{2i, 2p+q−i}
(Fig. 9) in the TC1(p + q, 0) network. This is the same as that
in a BY network.
Property 5: The channel graph of a TC1(p + q, k) network

is isomorphic to that of a BY(p + q, k) network.
Proof: When k = 0, the channel graph from an input to

an output consists of only one path (Property 3). Obviously, it
is isomorphic to that of a BY(p + q, 0) network. In addition, the
channel graph from an input to all outputs is a full binary tree
(Property 4) that consists of two subtrees rooted at vertices a
and b (Fig. 10). Let y be an output vertex. By the topological
rule given by (5), if y ∈ a-subtree, then ((y + 2p+q−1 − 1)
mod 2p+q) ∈ b-subtree.

When k = 1, consider the channel graph from input u to
output y in Fig. 10. By adding one extra stage, the destination y
can reach two outputs a′ and b′ vertices in the TC1(p + q, 0)

Fig. 10. Adding one extra stage allows two vertices a′ and b′ in the
TC1(p + q, 0) to reach the real destination. One of the two vertices a′ and
b′ must be in two different subtrees (rooted at a and b).

network. Because the last stage is just the mirror image of
the first stage, a′ and b′ must be separated by (2p+q−1 − 1).
From the discussion on k = 0, if a′ and b′ are separated
by (2p+q−1 − 1), they cannot belong to the same subtree.
That is, if a′ ∈ a-subtree (or b-subtree), then b′ ∈ b-subtree
(or a-subtree). Also, there is a unique path from input u
to a′ and b′ (Property 3). Therefore, the channel graph of
TC1(p + q, 1) will be the same as that in Fig. 6(b). This means
that it is isomorphic to that of BY(p + q, 1).

When k > 1, we can prove in a similar way that the channel
graph from one input to an output is isomorphic to that of a
BY(p + q, k) network. �



LEA et al.: ARCHITECTURE FOR TSI-FREE NONBLOCKING OPTICAL TDM SWITCHES 699

Fig. 11. (a) TC1 (4, 1) topology is a legal TDTS topology with frame
size = 4 and input size = 4. (b) TDM switch derived from time compressing
the topology of Fig. 11.

Property 6: The TC1(p + q, k) topology given by (4) is a
legal TDTS topology with frame size d and input size n, where
n = 2p and d = 2q .

Proof: We first consider the TC1(p + q, 0) network topol-
ogy. Each link position can also be represented as a bi-
nary number Xp+q(= (xp+q−1, . . . , x1, x0)) or by a two-tuple
(t, s), where 0 ≤ t ≤ (d− 1) and 0 ≤ s ≤ (n− 1), as used in
Property 1. We use both in proving this property.

Given (xp+q−1, . . . , x1, x0)l in any stage, when x0 = 1, it is
connected to the same position on the right, i.e.,
(xp+ q−1, . . . , x1, x0)l �→ (xp+ q−1, . . . , x1, x0)r (Fig. 7).
Property 1 obviously holds. We only need to check the
mapping for (xp+q−1, . . . , x1, x0)l with x0 = 0. According to
(4), the interconnection pattern is (Xp+q)l �→ (Gi(Xp+q))r.
Let (Xp+q)l = (t, j)l and (Gi(Xp+q))r = (u, ν)r. The differ-
ence between (Xp+q)l and (Gi(Xp+q))r is

(Gi(Xp+q))r − (Xp+q)l) mod nd = 2p+q−1−i. (6)

In the TDTS topology, there are n(= 2p) links per times-
lot. Thus, the time-slot difference between a link position
(Xp+q)l and its mapping (Gi(Xp+q))r is (2q−1−i). Thus, given
(t, j)l �→ (u, ν)r, we have u = ((t + 2q−1−i)mod d). Now, let
us compute the mapping for ((t + e)mod d, j)l.

((t + e)mod d, j)l �→ (Gi ((t + e)mod d) , j)r

=
((

(t + e) + 2q−1−i
)
mod d, ν )

)
r

= ((u + e)mod d, ν)r . (7)

Thus, Property 1 is satisfied. For the TC1(p + q, k) network,
the extra k stages are the mirror image of the first k stages.
By Property 2, TC1(p + q, k) is also a legal TDTS topology
(see Fig. 11). �

Fig. 12. (a) Same TC1(4, 1) topology in Fig. 11 can also be considered as
a legal TDTS topology with frame size = 8 and input size = 2. (b) Time-
compressed TDM switch.

Because the topology shown in Fig. 11 is a legal TDTS
topology (Property 5), we can time compress it into a delay-
unit-based TDM switch, and it is shown in Fig. 12. Another
important property of TC1 is that it depends only on (p + q) and
it is valid for all different (p, q) combinations. For example, the
same topology in Fig. 11 can also be considered as a TDTS
topology of n = 2, d = 8 [Fig. 12(a)]. Its time-compressed
TDM switch is shown in Fig. 12(b). This flexibility comes at
the expense of a larger maximum delay in the network, as will
be discussed in Section III-C.
Final Architecture: The construction of the nonblocking

Log2(N, k, c) network is based on its channel graph [12] and
the number of intersecting paths at each vertex of the channel
graph. From Properties 3–6, we find that the channel graph
of the TC1(p + q, k) network is isomorphic to that of the
BY(p + q, k) network, and the number of intersection paths
at each vertex in the channel graph is also the same. Thus,
if we replace the BY(p + q, k) network in the Log2(N, k, c)
network with a TC1(p + q, k) network, the number of copies
remains unchanged. The overall topology will be a legal TDTS
topology.

Our original design is for n = 4, d = 4. We use the topology
in Fig. 11 to replace the BY network. The overall topology
is given in Fig. 13. Note that the first and the last stage in
Fig. 13 are multiplexers, and they can be implemented with
2 × 2 couplers as well.

C. Other TDTS Topologies

There are many other TDTS topologies that can be used to
replace the BY networks. We show two below. The first one is
the topology given by

(Xp+q)l �→ (Gi(Xp+q))r , 0 ≤ i ≤ q − 1

(Xp+q)l �→ (Fi(Xp+q))r , q ≤ i ≤ p + q − 2 (8)
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Fig. 13. Time-compressed SNB TDM switch with four inputs and frame size = 4.

Fig. 14. (a) TC2(4, 0) network. (b) TC2(4, 1) network (add one extra stage). (c) It can be time compressed into a TDM switch with four inputs and four slots
(frame size).

where F and G are given in (3) and (5). Following the same
arguments we use for Properties 3–5, it is not difficult to show
that TC2 has isomorphic channel graphs as that of BY and TC1.
Therefore, it can also be used to replace the BY network in
Fig. 13 without changing the number of copies required.

The third type of legal TDTS topology is given in Fig. 15
which is the reversed topology of that in Fig. 14. The topology
is described by

(Xp+q)l �→ (Hi(Xp+q))r , 0 ≤ i ≤ p− 2

(Xp+q)l �→ (Ii(Xp+q))r , p− 1 ≤ i ≤ p + q − 2 (9)

where

Hi(Xp+q) =
{

(xp+q−1, . . . , xi+1, . . . , x0), if x0 = 0
(xp+q−1, . . . , xi+1, . . . , x0), if x0 = 1 (10)

and

Ii(Xp+q) =
{ (

(xp+q−1, . . . , x0)+2i+1
)
mod nd, if x0 = 0

(xp+q−1, . . . , x0), if x0 = 1.
(11)

Following similar arguments used for TC1 networks, we can
also show that it is a legal TDTS topology. Its time-compressed
TDM switch is shown in Fig. 15(c). All three require the same
number of couplers, and their space switching complexities
are the same. But, the difference lies in the delay. Among the
three, the TDM switch in Fig. 15 has the minimum value of
the maximum delay. As a matter of fact, it is only about half
the value of that in TDM switch given Fig. 12.

Compared with the rearrangeable networks in [6], the SNB
networks discussed in this paper obviously have more couplers.
But, the crosstalk is lower as they contain fewer stages. Table I
shows some examples (The multiplexing and demultiplexing
stages are not counted as they do not generate crosstalk).
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Fig. 15. (a) TC3(4, 0) network. (b) TC3(4, 1) network. (c) TC3(4, 1) can be time compressed into a TDM switch (inputs and four slots/per frame).

TABLE I
NUMBER OF CROSSPOINTS AND THE NUMBER OF STAGES IN REARRANGEABLE NETWORKS [6] AND SNB NETWORKS DISCUSSED IN THIS PAPER

(SNB: STRICTLY NONBLOCKING, RNB: REARRANGEABLE NONBLOCKING)

IV. CONCLUSION

In this paper, we have presented the design principles and
techniques for building nonblocking optical TDM switches that
do not use TSIs. Since optical TSIs are difficult to build and
have many drawbacks, like severe signal attenuation in the
system, a TSI-free architecture will be attractive for photonic
switching technologies. In contrast to previous works, we focus
on SNB network in this paper. We show several topologies that
can be used for our purpose, and each leads to a different value
in the maximum delay of the network. The design principles
can also be applied to space/wavelength photonic switching
systems, as the one discussed in [8].
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